- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0100000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Haque, Abir (1)
-
Shontz, Suzanne M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
Shepherd, Kendrick M (1)
-
Si, Hang (1)
-
Zhang, Yongjie Jessica (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Si, Hang; Shepherd, Kendrick M; Zhang, Yongjie Jessica (Ed.)Warping large volume meshes has applications in biomechanics, aerodynamics, image processing, and cardiology. However, warping large, real-world meshes is computationally expensive. Existing parallel implementations of mesh warping algorithms do not take advantage of shared-memory and one-sided communication features available in the MPI-3 standard. We describe our parallelization of the finite element-based mesh warping algorithm for tetrahedral meshes. Our implementation is portable across shared and distributed memory architectures, as it takes advantage of shared memory and one-sided communication to precompute neighbor lists in parallel. We then deform a mesh by solving a Poisson boundary value problem and the resulting linear system, which has multiple right-hand sides, in parallel. Our results demonstrate excellent efficiency and strong scalability on up to 32 cores on a single node. Furthermore, we show a 33.9% increase in speedup with 256 cores distributed uniformly across 64 nodes versus our largest single node speedup while observing sublinear speedups overall.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
